AI & Vectors

Roboflow

Learn how to integrate Supabase with Roboflow, a tool for running fine-tuned and foundation vision models.


In this guide, we will walk through two examples of using Roboflow Inference to run fine-tuned and foundation models. We will run inference and save predictions using an object detection model and CLIP.

Project setup

Let's create a new Postgres database. This is as simple as starting a new Project in Supabase:

  1. Create a new project in the Supabase dashboard.
  2. Enter your project details. Remember to store your password somewhere safe.

Your database will be available in less than a minute.

Finding your credentials:

You can find your project credentials inside the project settings, including:

Save computer vision predictions

Once you have a trained vision model, you need to create business logic for your application. In many cases, you want to save inference results to a file.

The steps below show you how to run a vision model locally and save predictions to Supabase.

Preparation: Set up a model

Before you begin, you will need an object detection model trained on your data.

You can train a model on Roboflow, leveraging end-to-end tools from data management and annotation to deployment, or upload custom model weights for deployment.

All models have an infinitely scalable API through which you can query your model, and can be run locally.

For this guide, we will use a demo rock, paper, scissors model.

Step 1: Install and start Roboflow Inference

You will deploy our model locally using Roboflow Inference, a computer vision inference server.

To install and start Roboflow Inference, first install Docker on your machine.

Then, run:


_10
pip install inference inference-cli inference-sdk && inference server start

An inference server will be available at http://localhost:9001.

Step 2: Run inference on an image

You can run inference on images and videos. Let's run inference on an image.

Create a new Python file and add the following code:


_13
from inference_sdk import InferenceHTTPClient
_13
_13
image = "example.jpg"
_13
MODEL_ID = "rock-paper-scissors-sxsw/11"
_13
_13
client = InferenceHTTPClient(
_13
api_url="http://localhost:9001",
_13
api_key="ROBOFLOW_API_KEY"
_13
)
_13
with client.use_model(MODEL_ID):
_13
predictions = client.infer(image)
_13
_13
print(predictions)

Above, replace:

  1. The image URL with the name of the image on which you want to run inference.
  2. ROBOFLOW_API_KEY with your Roboflow API key. Learn how to retrieve your Roboflow API key.
  3. MODEL_ID with your Roboflow model ID. Learn how to retrieve your model ID.

When you run the code above, a list of predictions will be printed to the console:


_10
{'time': 0.05402109300121083, 'image': {'width': 640, 'height': 480}, 'predictions': [{'x': 312.5, 'y': 392.0, 'width': 255.0, 'height': 110.0, 'confidence': 0.8620790839195251, 'class': 'Paper', 'class_id': 0}]}

Step 3: Save results in Supabase

To save results in Supabase, add the following code to your script:


_10
import os
_10
from supabase import create_client, Client
_10
_10
url: str = os.environ.get("SUPABASE_URL")
_10
key: str = os.environ.get("SUPABASE_KEY")
_10
supabase: Client = create_client(url, key)
_10
_10
result = supabase.table('predictions') \
_10
.insert({"filename": image, "predictions": predictions}) \
_10
.execute()

You can then query your predictions using the following code:


_10
result = supabase.table('predictions') \
_10
.select("predictions") \
_10
.filter("filename", "eq", image) \
_10
.execute()
_10
_10
print(result)

Here is an example result:


_10
data=[{'predictions': {'time': 0.08492901099998562, 'image': {'width': 640, 'height': 480}, 'predictions': [{'x': 312.5, 'y': 392.0, 'width': 255.0, 'height': 110.0, 'confidence': 0.8620790839195251, 'class': 'Paper', 'class_id': 0}]}}, {'predictions': {'time': 0.08818970100037404, 'image': {'width': 640, 'height': 480}, 'predictions': [{'x': 312.5, 'y': 392.0, 'width': 255.0, 'height': 110.0, 'confidence': 0.8620790839195251, 'class': 'Paper', 'class_id': 0}]}}] count=None

Calculate and save CLIP embeddings

You can use the Supabase vector database functionality to store and query CLIP embeddings.

Roboflow Inference provides a HTTP interface through which you can calculate image and text embeddings using CLIP.

Step 1: Install and start Roboflow Inference

See Step #1: Install and Start Roboflow Inference above to install and start Roboflow Inference.

Step 2: Run CLIP on an image

Create a new Python file and add the following code:


_32
import cv2
_32
import supervision as sv
_32
import requests
_32
import base64
_32
import os
_32
_32
IMAGE_DIR = "images/train/images/"
_32
API_KEY = ""
_32
SERVER_URL = "http://localhost:9001"
_32
_32
results = []
_32
_32
for i, image in enumerate(os.listdir(IMAGE_DIR)):
_32
print(f"Processing image {image}")
_32
infer_clip_payload = {
_32
"image": {
_32
"type": "base64",
_32
"value": base64.b64encode(open(IMAGE_DIR + image, "rb").read()).decode("utf-8"),
_32
},
_32
}
_32
_32
res = requests.post(
_32
f"{SERVER_URL}/clip/embed_image?api_key={API_KEY}",
_32
json=infer_clip_payload,
_32
)
_32
_32
embeddings = res.json()['embeddings']
_32
_32
results.append({
_32
"filename": image,
_32
"embeddings": embeddings
_32
})

This code will calculate CLIP embeddings for each image in the directory and print the results to the console.

Above, replace:

  1. IMAGE_DIR with the directory containing the images on which you want to run inference.
  2. ROBOFLOW_API_KEY with your Roboflow API key. Learn how to retrieve your Roboflow API key.

You can also calculate CLIP embeddings in the cloud by setting SERVER_URL to https://infer.roboflow.com.

Step 3: Save embeddings in Supabase

You can store your image embeddings in Supabase using the Supabase vecs Python package:

First, install vecs:


_10
pip install vecs

Next, add the following code to your script to create an index:


_26
_26
import vecs
_26
_26
DB_CONNECTION = "postgresql://postgres:[password]@[host]:[port]/[database]"
_26
_26
vx = vecs.create_client(DB_CONNECTION)
_26
_26
# create a collection of vectors with 3 dimensions
_26
images = vx.get_or_create_collection(name="image_vectors", dimension=512)
_26
_26
for result in results:
_26
image = result["filename"]
_26
embeddings = result["embeddings"][0]
_26
_26
# insert a vector into the collection
_26
images.upsert(
_26
records=[
_26
(
_26
image,
_26
embeddings,
_26
{} # metadata
_26
)
_26
]
_26
)
_26
_26
images.create_index()

Replace DB_CONNECTION with the authentication information for your database. You can retrieve this from the Supabase dashboard in Project Settings > Database Settings.

You can then query your embeddings using the following code:


_17
infer_clip_payload = {
_17
"text": "cat",
_17
}
_17
_17
res = requests.post(
_17
f"{SERVER_URL}/clip/embed_text?api_key={API_KEY}",
_17
json=infer_clip_payload,
_17
)
_17
_17
embeddings = res.json()['embeddings']
_17
_17
result = images.query(
_17
data=embeddings[0],
_17
limit=1
_17
)
_17
_17
print(result[0])

Resources